skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ray, Upamanyu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Cellulose nanofibers (NFCs) have emerged as a preferred choice for fabricating nanomaterials with exceptional mechanical properties. At the same time, boron nitride nanotubes (BNNTs) have long been favored in thermal management devices due to their superior thermal conductivity (k). This study uses reverse non-equilibrium molecular dynamics (MD) simulations to investigatekfor a hybrid material based on NFCs and BNNTs. The result is then compared with pure NFC and BNNT-based structures with equivalent total weight content to elucidate how incorporating BNNT fillers enhanceskfor the hybrid system. Furthermore, the fundamental phonon vibration modes responsible for driving thermal transport in NFC-based materials upon incorporating BNNTS are identified by computing the vibrational density of states from the Fourier transform analysis of the averaged mass-weighted velocity autocorrelation function. Additionally, MD simulations demonstrate how both NFCs and BNNTs synergistically improve the constituting hybrid structure’s mechanical properties (e.g. tensile strength and stiffness). The overarching aim is to contribute towards the engineered design of novel functional materials based on nanocellulose that simultaneously improve crucial physical properties pertaining to thermal transport and mechanics. 
    more » « less
  2. Conventional strategies for materials design have long been used by leveraging primary bonding, such as covalent, ionic, and metallic bonds, between constituent atoms. However, bond energy required to break primary bonds is high. Therefore, high temperatures and enormous energy consumption are often required in processing and manufacturing such materials. On the contrary, intermolecular bonds (hydrogen bonds, van der Waals forces, electrostatic interactions, imine bonds, etc.) formed between different molecules and functional groups are relatively weaker than primary bonds. They, thus, require less energy to break and reform. Moreover, intermolecular bonds can form at considerably longer bond lengths between two groups with no constraint on a specific bond angle between them, a feature that primary bonds lack. These features motivate unconventional strategies for the material design by tuning the intermolecular bonding between constituent atoms or groups to achieve superior physical properties. This paper reviews recent development in such strategies that utilize intermolecular bonding and analyzes how such design strategies lead to enhanced thermal stability and mechanical properties of the resulting materials. The applications of the materials designed and fabricated by tuning the intermolecular bonding are also summarized, along with major challenges that remain and future perspectives that call for further attention to maximize the potential of programming material properties by tuning intermolecular bonding. 
    more » « less
  3. Abstract The abundance of cellulose found in natural resources such as wood, and the wide spectrum of structural diversity of cellulose nanomaterials in the form of micro‐nano‐sized particles and fibers, have sparked a tremendous interest to utilize cellulose's intriguing mechanical properties in designing high‐performance functional materials, where cellulose's structure–mechanics relationships are pivotal. In this progress report, multiscale mechanics understanding of cellulose, including the key role of hydrogen bonding, the dependence of structural interfaces on the spatial hydrogen bond density, the effect of nanofiber size and orientation on the fracture toughness, are discussed along with recent development on enabling experimental design techniques such as structural alteration, manipulation of anisotropy, interface and topology engineering. Progress in these fronts renders cellulose a prospect of being effectuated in an array of emerging sustainable applications and being fabricated into high‐performance structural materials that are both strong and tough. 
    more » « less